sabato 21 marzo 2009

IL DNA




Il DNA è il depositario molecolare dell'informazione genetica, informazione che contenuta sottoforma di specifiche sequenze nucleotidiche in segmenti di DNA che siamo soliti chiamare geni, permette la sintesi di proteine e di RNA, che a loro volta sono molecole di fondamentale importanza per la sopravvivenza e il corretto funzionamento delle cellule. Il DNA, o la doppia elica come viene comunemente chiamato, è una grossa macromolecola i cui mattoni costituenti sono i nucleotidi che interagendo tra loro attraverso particolari legami, formano due catene elicoidali avvolte attorno ad un asse immaginario creando così una doppia elica rigida destrorsa. Nella parte interna ritroviamo le basi azotate che attraverso legami idrogeno legano le due catene polinucleotidiche, mentre la porzione esterna è costituita dai deossiribonucleotidi con i gruppi fosfato carichi negativamente che interagiscono con l'ambiente cellulare circostante. Le basi azotate che si trovano all'interno della struttura sono letteralmente impilate le une sulle altre (cioè sovrapposte come una pila di monete); ed è proprio l'impilamento e la particolare complemantarietà delle basi azotate a permettere l'esistenza del DNA.







L'appaiamento tra le basi infatti è altamente specifico; ogni base azotata presente su una catena è appaiata sullo stesso piano con una base dell'altra catena: l'adenina è legata sempre ad una timina, la guanina è legata sempre ad una citosina, di conseguenza l'appaiamento vede sempre una purina legarsi con una pirimidina. Grazie a questo appaiamento specifico conoscendo le basi nucleotidiche presenti su un filamento è possibile conoscere anche le basi presenti sul filamento opposto dal momento che sono complementari le une alle altre. Le coppie di basi distano 0,34 nm, con 10,5 coppie di basi per ogni giro dell'elica (360°) della doppia elica. Lo scheletro zucchero-fosfato dei due filamenti complementari è orientato in maniera antiparallela, quindi i due filamenti hanno anche una polarità chimica opposta. Nella stessa direzione, lungo la doppia elica del DNA, in un filamento i legami fosfodiesterici vanno dal carbonio 3' di un nucleotide al carbonio 5' di quello adiacente, mentre il filamento complementare va dal carbonio 5' a quello 3'. Questa complementarità come vedremo in seguito ha un ruolo di fondamentale importanza nei processi di replicazione, trascrizione, ricombinazione.
Due sono le interazioni chimiche che determinano la corretta stabilità del DNA:
1)APPAIAMENTO DELLE BASI: tra i due filamenti assistiamo alla formazione di legami idrogeno, legami chimici che si esercitano tra un atomo elettronegativo (ossigeno, azoto) e un atomo di idrogeno legato ad un altro atomo elettronegativo (nell'immagine sopra si possono vedere le basi adenina e timina legate tra di loro da un atomo di ossigeno ed un idrogeno, e da un atomo di idrogeno ed uno di azoto). I legami a idrogeno come accennato prima, essendo più deboli dei covalenti, questo fa si che possano essere rotti e riavvicinati facilmente permettendo a tutti quegli enzimi che svolgono dei ruoli a carico del DNA di poter aprire e chiudere come una cerniera la doppia elica, come nel caso della replicazione del DNA. Inoltre tra le basi azotate si formano anche un numero diverso di legami idrogeno che in parte influenza la stabilità della doppia elica. Tra una adenina ed una timina assistiamo alla formazione di due legami idrogeno mentre tra una guanina e una citosina vi sono tre legami idrogeno. Ne consegue che una molecola di DNA che contiene una percentuale maggiore in guanina e citosina risulta essere nel suo insieme più stabile. Inoltre non è una semplice coincidenza che le regioni del DNA ricche in adenina-timina siano regioni che svolgono un ruolo importante durante i processi replicativi, infatti le ritroviamo in regioni a monte dei geni definiti promotori, che permettono lo svolgimento della doppia elica proprio nelle sequenze promotrici ricche in A-T (basti citare la prinbow box procariotica che analizzeremo in seguito). Inoltre gli appaiamenti di basi che abbiamo accennato poc'anzi adenina con timina, guanina con citosina sono gli unici appaiamenti possibili per offrire al DNA uno specifico diametro e stabilità strutturale. Altri tipi di combinazioni del tipo pirimidina-pirimidina o purina-purina sono pure possibili ma non darebbero le stesse combinazioni di legami idrogeno e non riuscirebbero ad entrare le giusto diametro dell'elica.
2) IMPILAMENTO DELLE BASI: insieme ai legami idrogeno rappresenta il secondo tipo di forze che rendono la molecola di DNA stabile. L'impilamento è un vero e proprio legame non covalente che si instaura tra le basi azotate (che ricordiamolo sono composti aromatici). Nel sovrapporsi le une sulle altre come una pila di monete gli elettroni dei legami pi greco vengono parzialmente distribuiti tra le basi azotate presenti al di sotto e al di sopra nella struttura. Inquesto modo una volta che i filamenti sono appaiati la stabilità della doppia elica viene aumentata ulteriormente.
I nucleotidi che costituiscono il DNA non riempono completamente il cilindro immaginario dell'elica ma formano degli spazi vuoti noti come solco maggiore e solco minore, che costituiscono dei siti in corrispondenza dei quali le molecole di DNA interagiscono con proteine o farmaci. Inoltre bisogna ricordare che appaiamento e impilamento sono importanti non solo per la stabilità strutturale della doppia elica ma anche dal punto di vista biologico, perchè ci danno importanti informazioni su come la struttura viene replicata (e di conseguenza come l'informazione genetica venga trasmessa alle generazioni successive). Il fatto che vi debba essere un determinato tipo di combinazione tra le basi azotate (adenina con timina e citosina con guanina) è indicativa del fatto che la replicazione del DNA potrà generare solo ed esclusivamente copie perfette della molecola parentale, utilizzando i due filamenti come stampo per la sintesi di nuove molecole di DNA (ovviamente sempre che la replicazione vada a buon fine). Vedremo in seguito come questo processo sarà utilizzato dagli enzimi DNA polimerasi durante la replicazione del DNA e dalle loro controparti le RNA polimerasi durante i processi della trascrizione.

Nessun commento:

Posta un commento